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Lattice action

Consider a four-dimensional Euclidean lattice with
spacing a. Our lattice action S can be split into gauge
and fermionic parts, S = Sg +Sf . For the gauge part, we
will use the standard unimproved Wilson gauge action

Sg = −
β

Nc

∑

P

Re Tr UP = −
β

4Nc

a4
∑

x

Tr F̂µν F̂
µν+O(a6)

(1)
which reduces to the standard Yang-Mills action in the

continuum limit if we identify β = 2Nc/g
2

0 . F̂µν is a
lattice version of the usual field strength tensor. The
sum is over plaquettes:

∑

P

Re Tr UP =
∑

x

∑

µ<ν

Re Tr [Uν(x)Uµ(x+ ν̂)

×U †ν (x+ µ̂+ ν̂)U †µ(x + µ̂)
]

where the notation Uµ(x) indicates a gauge link from the
lattice site x to the site x + µ̂. The figure to the right
shows a typical plaquette.

For our fermions, we employ the “clover” action, which
uses Wilson-type fermions along with a dimension 5 op-
erator included to explicitly cancel O(a) lattice artifacts:

Sf = a4
∑

x

ψ(x)(D+m0)ψ(x)+a5csw

∑

x

ψ(x)
i

4
σµν F̂µνψ(x)+O(a6)

(2)
where σµν = i

2
[γµ, γν ], and the parameters m0 and csw

are free.
In the continuum limit, a4

∑

x →
∫

d4x and we recover
the usual continuum action. Terms of O(a5) and higher
in the action will be suppressed by powers of the lattice
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FIG. 1: A typical plaquette UP , appearing in the gauge action
(1).

spacing a, and will thus vanish in the continuum; these
terms are generically called “lattice artifacts.”

The second term in Sf above is included explicitly to
cancel these artifacts; its coefficient is tuned to cancel
O(a) contributions that are generated on the lattice. Di-
mension five operators are forbidden in Sg by gauge in-
variance, so O(a) artifacts do not exist.

Boundary conditions

(I’ll clean this section up later.)
The notation in this section generally follows the re-

view paper by Sommer [1].
Schrodinger Functional (SF): L4 Euclidean box.

Dirichlet boundaries in the time direction, periodic in
spatial directions.

Non-perturbative gauge BC [2]:
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




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
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Running coupling gauge BC [1]:
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3
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The gauge link values on the boundary are then defined
by

Ck =





φ1

φ2

φ3



 , C′k =





φ′
1

φ′2
φ′

3





and
{

Uk(x)|t=0
= exp(aCk)

Uk(x)|t=L = exp(aC′k).

Fermion spatial boundary conditions:

{

ψ(x+ Lk̂) = eiθkψ(x)

ψ(x+ Lk̂) = ψ(x)e−iθk .

Setting all θk = 0 recovers simple periodic boundary
conditions.
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Various spin projections of fermions on the boundary
are set equal to ρ, ρ̄, ρ′, ρ̄′. These boundary values are
typically taken to be zero, but fermion boundary effects
still appear via functional derivatives with respect to the
boundary fields,

ζ(x) ≡
δ

δρ̄(x)
, ζ̄(x) ≡ −

δ

δρ(x)
.

Non-perturbative tuning

We are interested in simulating at zero physical quark
mass. However, with Wilson fermions the bare quark
mass m0 will be additively renormalized, i.e. it will be
related to the renormalized quark mass mR by

mR = m0 −mc
0
.

The physical quark mass will vanish when the bare quark
mass is tuned to the critical point m0 = mc

0. In gen-
eral, the value of the critical point will depend upon the
characteristics of the lattice being simulated, including
the coupling strength. This dependence can be strongly
non-perturbative, so to determinemc

0 we will need to per-
form a non-perturbative tuning, which is outlined below.
The improvement coefficient csw can be tuned in exactly
the same way, so we can determine that along with the
critical bare mass for little additional cost.

Tuning of the renormalized mass is accomplished via
the partial conservation of the axial current (PCAC) re-
lation [1]. Classically, the divergence of the axial current
satisfies the operator equation

∂µAa
µ(x) = 2mP a(x)

where Aa
µ(x) is the axial current ψ̄(x)γ5γµσ

aψ(x), while

P a(x) is the pseudoscalar current, ψ̄(x)γ5σ
aψ(x). More

precisely, a quantum theory satisfies the equation

<[∂µAa
µ(x) − 2mP a(x)]Oext>= 0

where Oext is some operator that vanishes at x. (See
Sommer’s review paper, arXiv:hep-lat/0611020, p.19.)
Going explicitly now to the Schrodinger functional pic-
ture, we can use take this identity to define a current
quark mass

m =
<

[

∂µAa
µ(x)

]

Oa>

2 <P a(x)Oa>

where the operator Oa is a pseudoscalar formed from the
boundary fermion fields,

Oa =

∫

d3x

∫

d3y ζ̄(x)γ5σ
aζ(y).

We then fine-tune the bare mass in simulation until
the measured current quark mass vanishes. The clover

term can also be tuned at the same time, by measuring
the mass at several points in the bulk and looking for
variations of order a. The exact procedure is as follows:

• Fix β and L/a, and choose initial guesses for m0

and csw.

• Perform a simulation. Measure correlators between
pseudoscalar and axial operators and the boundary
fermion fields as above, to determine the current
mass m.

• If m 6= 0, change m0; if there is an O(a) difference
between values of m in the bulk, change csw.

• Repeat the two steps above until the critical point
(mc

0, c
c
sw) at which m vanishes to O(a2) is located.

• Repeat all of the above at a new choice of β and
L/a.

The exact algorithm and procedure above is detailed in
Luscher et. al., NPB 491 (1997) p.323.

Since all the tuning above is done in the bulk, it is
conceivable that the L/a dependence will be weak, al-
lowing us to perform the tuning only at small L/a but
use the derived parameters for all lattice sizes. Further-
more, rather than going through the complete procedure
above for each value of β that we wish to simulate at, it
should be possible to perform the tuning at a range of β
values and then fit the critical values to an interpolating
function, obtaining mc

0(β) and ccsw(β).

Perturbative improvement

The existence of Dirichlet boundaries in the SF formu-
lation leads to the introduction of O(a) lattice artifact
boundary terms, in both the gauge and fermion actions.
We can introduce counterterms into the action to cancel
out these contributions.

Four such counterterms exist, conventionally denoted
cs, ct, c̃s, and c̃t. The first two appear in the gauge
action, the second two in the fermion action. The labels
s and t multiply boundary terms in the action involving
only spatial links on the boundary and temporal links
connected to the boundary, respectively.

Neither of the purely spatial counterterms will appear
in our study of the running coupling. cs does not appear
in the O(a) effective action when the “running coupling”
gauge boundary conditions noted above are chosen [1].
c̃s is purely a product of spatial boundary fermion fields
ρ, which for our purposes are set to zero as noted above.

The coefficient ct simply appears in front of the gauge
action (1), multiplying all temporal plaquettes which in-
tersect either of the Dirichlet boundaries. Its value is
known to two-loops in lattice perturbation theory [3]:

ct = 1 + (−0.08900(5) + 0.0191410(1)Nf) g
2

0

+
(

−0.0294(3) + 0.002(1)Nf + 0.0000(1)N2

f

)

g4

0 +O(g6

0).
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The last coefficient c̃t appears with an additional term in the fermion action [4]:

δSf = a4
∑

x

(c̃t − 1)

[(

ψ(x)
1

2
(1 + γ0)∇⋆

0ψ(x) + ψ(x)
←

∇
⋆

0

1

2
(1 − γ0)ψ(x)

)

δ(x4 − a)

+

(

ψ(x)
1

2
(1 − γ0)∇0ψ(x) + ψ(x)

←

∇0

1

2
(1 + γ0)ψ(x)

)

δ(x4 − (L− a))

]

where ∇µ is a lattice version of a gauge-covariant deriva-
tive operator, defined in [4]. If we expand out the deriva-
tives and set all boundary fermion fields ρ to zero, the
surviving contribution of this term to the action is

δSf |ρ=0
= a4

∑

x

(c̃t − 1)

{

1

a
ψ(x)ψ(x)

[

δ(x4 − a) + δ(x4 − (L− a))
]}

which is effectively a correction to the bare quark mass

term at x4 = a and x4 = L − a, i.e. making the modifi-
cation

m′0 = m0 + (c̃t − 1)(δt,a + δt,L−a)

in the fermion action (2). The perturbative value of c̃t is
known to one loop, and is independent of Nf [3]:

c̃t = 1 − 0.01795(2)g2

0
+O(g4

0
).
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